Deep Learning
Deep Learning
-
Module 1: Introduction
- ANN
- Neural Networks
- Activation Function
- Bias
- Bias in Neural Networks
- Data, Applications of Data, Models
- Loss Functions
- Learning Algorithms & Model Performance
-
Module 2: Python Basics
- Getting System Ready - Jupyter Notebook
- Accessing Google Colab Notebook
- Download Materials
- Python Basics - Data Types
- Python Basics - Containers in Python
- Control Statements Python if..else
- Python Control statments - While and For
- Functions & Classes in Python
-
Module 3: DS
- Numpy
- Pandas in Python - Pandas Series
- Pandas Data Frame
- Pandas Data frame - cleaning & Examining the data
- Plotting with Matplotlib
- Contour Plots
-
Module 4: MP Neuron Model
- MP Neuron Introduction
- MP neuron
- Intuition of data
- Loss & finding parameters
- Mathematical Intuition
-
Module 5: MP Neuron in Python
- MP Neuron - Data import
- Train Test Split
- Modify Data
- MP Neuron in Python
- MP Neuron Class
- Assignment for MP Neuron in Python
- Assignment Answer Submission - MP Neuron
-
Module 6: Perceptron
- Perceptron Model and its representation
- Loss function & Parameter Update
- Why Update Rule Works
- Update Rule in Programs.
-
Module 7: Sigmoid Neuron
- Percepron Limitations
- Sigmoid Neuron Introduction
- Sigmoid Neuron Data
- Sigmoid Intuition
- Manual fitting of data
- Gradient descent
- Program overview
- Program in Python
-
Module 8: Basic Probability
- Introduction to Probability and Random Variables
- Why Random Variable is important
- Random Variable - Types
- Probability Distribution Table
- Why do we require Entropy Loss
-
Module 9: Deep Neural Networks
- Why Deep Neural Networks
- Linear Separation of Data.
-
Module 10: Deep Learning Foundation
- Understanding Universal Approximation Theorem
- Confirming Universal Approximation Theorem Works
- Going deep into Neural Networks
- Challenges in Creating Deep Neural Networks from Scratch
-
Module 11: TensorFlow 2.X
- Deep Neural Networks - Recap
- Introducing Tensorflow
- Building a Neural Network with Tensorflow
- Build Neural Network with Tensorflow - HandsOn
-
Module 12: Activation Functions
- Activation Functions in Deep Learning Neural Networks - Introduction
- Various Activation Functions
-
Module 13: Network Architecture
-
Module 14: Applying the Deep Learning
- Moving from Shallow learning to Deep learning
- Keras Basics, Types of Problems
- ReLU
- Softmax & Cross Entropy
- Implementing Multi Class classification using keras
- Regression Problem
-
Module 15: Project Work & Documentation